
Introduction to Embedded

Systems

Outline

 Embedded Systems

 High Performance Embedded Systems

 Verification and Validation

 Conventional Verification of Embedded

Systems

 Verification of Complex Systems

 Conclusion

 Questions and Answers

Introduction to Embedded Systems (1/4)

 An application specific electronic sub-system

which is completely encapsulated by the main

system it belongs to.

 The main systems can range from household

appliances, home automation, consumer

electronics, ATMs, network routers, automobiles,

aircrafts, etc.

Introduction to Embedded Systems (2/4)

 Designed for some specific tasks

 Subjected to real time performance constraints

that must be met

 Feature tightly integrated combinations of

hardware and software

Introduction to Embedded Systems (3/4)

 Typical embedded software components:

Embedded Application Code

Device Drivers

A Real-Time Operating System (RTOS)

Hardware abstraction layer(s)

System initialization routines

Data Bus

Data

Memory

Program

Memory

interrupts

Digital o/p

Analog o/p

Digital i/p

Analog i/p

INPUTS OUTPUTS

Links to Other Systems

User Interface

Address Bus

CPU

Analog
Front End

Digital
i/p Ports

User Interface
Modules

Digital
o/p Ports

D/A,
Isolation..

Comms:
ASC, SSC,
USB, IIC,
IrDA, etc.

Support:
Timers
Watchdog

Outline

 Embedded Systems

 High Performance Embedded Systems

 Verification and Validation

 Conventional Verification of Embedded

Systems

 Verification of Complex Systems

 Conclusion

 Questions and Answers

High Performance Embedded Systems

(1/10)

 Massive computational resources with

requirements of

 Small size

 Low Weight

 Very low power consumption.

 Need to employ innovative, advanced system

architectures

High Performance Embedded Systems

(2/10)

 Architectures typically feature

 Multiple processor cores

 Tiered memory structures with multi-level memory

caching

 Multi-layer bus structures.

 Super-pipelining and/or super-scaling

High Performance Embedded Systems

(3/10)

 The current state-of-the-art:

Multiple computational and data-processing

engines, memory, and peripherals, all constructed

on a single silicon chip called a System-on-Chip

(SoC).

 Designs to feature multiple general-purpose

central processing unit (CPU) cores as well as

special-purpose digital signal processor (DSP)

cores

Tricore

TriCore

32-Bit MCU-

DSP

 DSP Strengths

 Zero Overhead Loop

 Dedicated Hardware Multipliers

 Powerful Multi-Operation Instructions

 Addressing Modes

 Data Formats

RISC Strengths

 Register Based Architecture

 Reduced Instruction Set

 Instruction Pipeline

 C/C++ language support

 Memory Protection

Unified

MCU-DSP

16-Bit FP DSP Core

32-Bit RISC

Core

32-Bit MCU

MCU Strengths

 Real Time Control

 High System Integration

 Range of On-Chip Peripherals

 Dedicated Bit Manipulation unit

High Performance Embedded Systems (4/10)

High Performance Embedded Systems

(5/10)

 Embedded designs to include multiple

general-purpose central processing unit

(CPU) cores as well as special-purpose digital

signal processor (DSP) cores

Firmware

Peripherals

Core 1 Core 2

Memory

Core 3

High Performance Embedded Systems

(6/10)

 Multilayer Bus Structures

CPU and DSP cores can have separate

buses for control, instructions, and data,

DMA buses along with one or more

dedicated peripheral buses.

Both the CPUs and DSPs can have tightly-

coupled memory buses, external memory

buses, and shared memory buses.

High Performance Embedded Systems

(7/10)

 Increasing software content

 The software content of embedded systems is

increasing at a phenomenal rate

 software development and test often dominate

the costs, timelines, and risks associated with

today's embedded system designs.

High Performance Embedded Systems

(8/10)

High Performance Embedded Systems

(9/10)

 Decreasing design cycles

 Market windows are continually narrowing

 Competition gets more and more aggressive

 Consumer electronics markets are extremely

sensitive to time-to-market pressures

High Performance Embedded Systems

(10/10)

Outline

 Embedded Systems

 High Performance Embedded Systems

 Verification and Validation

 Conventional Verification of Embedded

Systems

 Verification of Complex Systems

 Conclusion

 Questions and Answers

Verification and Validation (1/7)

 What is Verification and Validation?

Verification

Verification confirms that work products

properly reflect the requirements specified

for them. In other words, verification ensures

that ‘the product has been built right’.

Verification and Validation (2/7)

Validation

Validation confirms that the product, as

provided, will fulfill its intended use. In other

words, validation ensures that ‘you built the

right thing’”.

Verification and Validation (3/7)

 Why Verification and Validation?

Business considerations

 Legal

Refutation

Warranty / Recall

Regulatory issues

FDA

FAA

DoD

Verification and Validation (4/7)

Safety considerations

 Life sciences

Mission critical

Automotive examples:

Drive by wire

oElectronic throttle control

oElectronic steering

ABS

Airbag Systems

Verification and Validation (5/7)

Abstraction Levels of Design Under Verification

 Behavioral Model

 Example: c <= a * b

 May not include timing information

 Verification examines the basic operation and interactions among the systems’

components

 RTL (Register-Transfer-Level) Model
– VHDL/Verilog commonly used to model RTL

– Accurate cycle-level information (no
propagation delays)

– Verification of exact cycle behavior

 Gate-Level Model
– Specifies each individual logic element and their interconnections

– Verification at this level is time-consuming but necessary for
clock boundaries and reset conditions

Verification and Validation (6/7)

Importance of Verification in Early Design Stages

Behavioral RTL Gate Level Transistor

Revenue loss
due to delay in
Time-To-Market

Remove as many bugs as possible in early designs stages

Ease of verification

Source: Verification Methodology Manual, 2000 - TransEDA

Verification and Validation (7/7)

Outline

 Embedded Systems

 High Performance Embedded Systems

 Verification and Validation

 Conventional Verification of Embedded

Systems

 Verification of Complex Systems

 Conclusion

 Questions and Answers

Conventional Verification of Embedded

Systems (1/13)

Determine the overall system
architecture

Design System Hardware

Construct hardware prototype

Install and test OS and/or
middleware

Develop, port, integrate, and debug
embedded software

Conventional Verification of Embedded

Systems (2/13)

 Conventional verification drawback (mainly

due to shorter design cycles)

SoC to be fabricated before developing the

software

Having to wait for the implementation-level

representation of the design (specified RTL)

to become available before developing the

embedded software.

Conventional Verification of Embedded

Systems (3/13)

 Physical Prototypes as primary verification

mechanism

Typically involves a circuit board and the

SoC in the form of working silicon.

The hardware portion of the design is now

almost 100 percent tied down

Not much useful in the context of exploring

and evaluating alternative architectures

Conventional Verification of Embedded

Systems (4/13)

 Important hardware/software tradeoffs can’t
be made before the design partitioning is
locked down and the chips are
manufactured

System design must be largely based on
experience and intuition, as opposed to
hard data.

Unacceptable in today's complex
algorithms, multi-core systems, tiered
memory systems, and multi-layered bus
structures.

Conventional Verification of Embedded

Systems (5/13)

 Hardware acceleration and emulation as

verification mechanism

These typically involve arrays of field-

programmable gate arrays (FPGAs) or

processors.

These solutions accept RTL representations

of the design and translate them into an

equivalent suitable for hardware

acceleration.

The verification can get very costly

Conventional Verification of Embedded

Systems (6/13)

 Issues in multi-processor designs

Emulators also have problems with limited

visibility into the design

Software development cannot commence

until a long way into the design cycle. (The

hardware design is largely established 

limitations with regard to exploring and

evaluating alternative architectures)

Conventional Verification of Embedded

Systems (7/13)

 RTL-based simulation as verification

mechanism

An RTL simulation solution requires RTL

representations of the hardware  Delays

in meaningful software development until

the RTL becomes available

 It simply isn't possible to use software

simulation to determine how well the

architecture performs on real software

workloads

Conventional Verification of Embedded

Systems (8/13)

A software simulation running on a on very

high-end (and correspondingly expensive)

machine would hardly achieve equivalent

simulation speeds of more than a few Hz
 That is, a few cycles of embedded system clock for each

second in real time

 Detailed simulations can be performed on only small

portions of the software.

Conventional Verification of Embedded

Systems (9/13)

 ISS-based simulation as verification

mechanism

 Verify and debug chips using software models that can execute
the same binary code as the actual processors

 Limitations:

– Only processor cores can be modeled

– Accuracy is compromised for high performance verification
(typically not cycle accurate)

– Lack of synchronization support for multi-processor based
systems

Outline

 Embedded Systems

 High Performance Embedded Systems

 Verification and Validation

 Conventional Verification of Embedded

Systems

 Verification of Complex Systems

 Conclusion

 Questions and Answers

Verification of Complex Systems (1/15)

 System-On-Chip (SoC) designs increasingly
become the driving force of a number of
modern electronics systems

 A number of key technologies integrate
together in forming the highly complex
embedded platform

 Verification need to account for integration of
a number of different IPs into new designs,
the coupling of embedded software into
designs, and the verification flow from core to
the design, etc.

Verification of Complex Systems (2/15)

 IP Core Verification and System Level

Verification both need to be addressed

adequately

 On top of structural complexities, further

bottlenecks are introduced by:

 Time to market pressures

 Increasing software content

 Other stringent design constraints such as size,

weight, low power levels, etc.

Verification of Complex Systems (3/15)

 The system level design strategies should be
considered together with the complex task of
verification

 Hardware , first, then software, is no longer a
viable theme

 Appropriate verification strategies need to be
employed from the outset to minimize
downstream defects including SoC re-spins

 Concurrent hardware and software
development would mandatory.

Verification of Complex Systems (4/15)

 SoC architects to employ a broad system

level design strategy that will allow:

Explore and evaluate system level

architectural choices

Concurrent hardware-software design

Easily evaluate and integrate a number of

different technologies

Adequate verification at every level of the

design cycle

Verification of Complex Systems (5/15)

Carry out an architecture level power

analysis

Drive requirements for executable

specifications

Provide visibility into designs

Easily handle regression testing

How do we achieve all this with

such complexity?

Verification of Complex Systems (6/15)

 The answer to all above is to employ a Unified

System Model without committing to any pre-

conceived hardware / software partitioning.

 This will be a type of electronic systems level

(ESL) prototype

 The form of these models can be anywhere

from a cycle-accurate RTL model and to a

time-efficient ISS model, or a hybrid

Verification of Complex Systems (7/15)

Source: “Mixed-Abstraction Virtual System Prototypes
 Close SOC Design Gaps”, Carbon Design Systems, Inc.

Verification of Complex Systems (8/15)
Running Speed

10Hz

100Hz

1KHz

10KHz

100KHz

1MHz

10MHz

100MHz

SW Simulator

Investment

HW Emulator

Rapid Prototype

Real Silicon

HW Accelerator

Ideal VerificationIdeal Verification

SolutionSolution

Make it fasterMake it faster

Make it cheaperMake it cheaper

Ideal VerificationIdeal Verification

SolutionSolution

Make it fasterMake it faster

Make it cheaperMake it cheaper

Verification of Complex Systems (9/15)

 The basis for a unified system model is

Transaction Level Modeling (TLM).

Transactions
 Basic representation for exchange of information between two

blocks

 Improve efficiency and performance of verification by raising the

level of abstractions from the signal level

 Can be as simple as a single data write operation or linked

together to form a complex IP packet transfer

Verification of Complex Systems (10/15)

Transactions:

Source: Cadence white paper, “The Unified Verification Methodology”

Stimulus Generation: Transactions

 Transactor provides a level of abstraction between the pins of the
model and the test code

 Encapsulation: Test code does not need knowledge about the bus protocols

 Abstraction: Allows test to be written in an abstract fashion that specifies the
required transactions, instead of the operation execution details

 Re-use: Transactor provides a standard set of routines that the test can call

 Modularity: Verification environment can be built from a set of parts

DESIGN

UNDER

VERIFICATION

Processor

 Bus

Test Code

Write (Addr, data)

Data = Read (Addr)

Write

Operation

Read

Operation

Others

Operations

Test

Interface

Bus

Driver

Transactor

Verification of Complex Systems (11/15)

C

Transactor

HDL
C to HDL

EDIF
Synthesis

Transactor

C ISS
Processor

Cross-compiler

Transactor

Transactor

Transactor

SW part
model

HW part
model

Transaction Level Models (TLM)

 Support functional design and verification at various abstraction levels

 Advantages

 Enhance reusability in the test-benches

 Improve debugging and coverage analysis

Source: Chong-Min Kyung, “Current Status and Challenges of SoC Verification for Embedded Systems Market”, IEEE International
SOC Conference, 2003

Verification of Complex Systems (12/15)

Unified System Model: Functional Prototype
 Unambiguous executable specification

 Golden top-level verification environment and integration vehicle
 Reference for defining transaction coverage requirements

 Model for performing architectural trade-offs

 Early handoff vehicle to system development teams

 Fast executable model for early embedded software development

Source: Cadence white paper, “The Unified Verification Methodology”

Verification of Complex Systems (13/15)

Functional Level to Implementation Level Prototype

Source: Cadence white paper, “The Unified Verification Methodology”

Verification of Complex Systems (14/15)

 Unified System Model with the highest desirable abstraction is created
early in the design process by the SoC verification team working
closely with the architects

 A test suite is included with the Functional Prototype

 Each subsystem has its own TLM (Transaction Level Model) defined at
the SoC partition

 Individual subsystem teams proceed to develop the implementation
level of the subsystem

 The test suite is run on the FVP as each subsystem implementation is
integrated into the FVP

 The process of integration is facilitated by transactors, which translate
information between the transaction and signal level

 Once all the transaction-level models are replaced, the implementation
level prototype is complete

Verification of Complex Systems (15/15)

Outline

 Embedded Systems

 High Performance Embedded Systems

 Verification and Validation

 Conventional Verification of Embedded

Systems

 Verification of Complex Systems

 Conclusion

 Questions and Answers

Conclusion

 Embedded systems tend to contain tens of

processor cores with multi-layered busses and

bus-bridges.

 Hardware and software development a

mandatory design methodology.

 Existing embedded system verification strategies

do not offer enough sophistication for today's

complex systems.

Conclusion

 TLM based Unified System Models provide a

means to carry out design and verification hand in

hand while promoting hardware / software co-

development.

Source: DSP Design Line

End of Presentation

Thank you!

Any Questions ?

Introduction to Embedded Systems (1/4)

 An application specific electronic sub-system

which is completely encapsulated by the main

system it belongs to.

 The main systems can range from household

appliances, home automation, consumer

electronics, ATMs, network routers, automobiles,

aircrafts, etc.

Introduction to Embedded Systems (1/4)

 An application specific electronic sub-system

which is completely encapsulated by the main

system it belongs to.

 The main systems can range from household

appliances, home automation, consumer

electronics, ATMs, network routers, automobiles,

aircrafts, etc.

Introduction to Embedded Systems (1/4)

 An application specific electronic sub-system

which is completely encapsulated by the main

system it belongs to.

 The main systems can range from household

appliances, home automation consumer

electronics, ATMs, network routers, automobiles,

aircrafts, etc.

Introduction to Embedded Systems (1/4)

 An application specific electronic sub-system

which is completely encapsulated by the main

system it belongs to.

 The main systems can range from household

appliances, home automation, consumer

electronics, ATMs, network routers, automobiles,

aircrafts, etc.

Introduction to Embedded Systems (1/4)

 An application specific electronic sub-system

which is completely encapsulated by the main

system it belongs to.

 The main systems can range from household

appliances, home automation, consumer

electronics, ATMs, network routers, automobiles,

aircrafts, etc.

Introduction to Embedded Systems (1/4)

 An application specific electronic sub-system

which is completely encapsulated by the main

system it belongs to.

 The main systems can range from household

appliances, home automation, consumer

electronics, ATMs, network routers, automobiles,

aircrafts, etc.

Introduction to Embedded Systems (1/4)

An application specific electronic sub-system which

is completely encapsulated by the main system it

belongs to.

The main systems can range from household

appliances, home automation, consumer

 routers, automobiles, aircrafts, etc.

electronics, ATMs, network

High Performance Embedded Systems

(3/10)

 The current state-of-the-art:

Multiple computational and data-processing

engines, memory, and peripherals, all constructed

on a single silicon chip called a System-on-Chip

(SoC).

 Designs to feature multiple general-purpose

central processing unit (CPU) cores as well as

special-purpose digital signal processor (DSP)

cores

Conventional Verification of Embedded

Systems (7/13)

 RTL-based simulation as verification

mechanism

a = 1;

#20 b = 1;

$display (“status is = %d”,c);

...

Testbench DUV

Source: Chong-Min Kyung, “Current Status and Challenges of SoC Verification for Embedded
Systems Market”, IEEE International SOC Conference, 2003

Conventional Verification of Embedded

Systems (5/13)

 Hardware acceleration and emulation as

verification mechanism

These typically involve arrays of field-

programmable gate arrays (FPGAs) or

processors.

Simulation environment

Testbench

Module

0

Module

1

Module 2

Hardware

Accelerator

Module 2 is

synthesized &

compiled into

FPGAs

Source: Chong-Min Kyung,
“Current Status and
Challenges of SoC
Verification for Embedded
Systems Market”, IEEE
International SOC
Conference, 2003

Conventional Verification of Embedded

Systems (5/13)

 Hardware acceleration and emulation as

verification mechanism

&

&

>

+

Logic design Emulation hardware with multiple FPGAs

Design

mapping

External pins

Source: Chong-Min Kyung,
“Current Status and
Challenges of SoC
Verification for Embedded
Systems Market”, IEEE
International SOC
Conference, 2003

FPGA 0 FPGA 1

FPGA 2 FPGA 3

Crossbar
(Switch)

Verification of Complex Systems (4/15)
SoC architects to employ a

broad system level design
strategy that will allow:
 Explore and evaluate

system level
architectural choices

 Concurrent hardware-
software design

 Easily evaluate and
integrate a number of
different technologies

 Adequate verification at
every level of the design
cycle

 Specification

Behavioral Model

RTL Model

Gate-Level Model

Transistor-Level Model

D
E

S
IG

N

V
E

R
IF

IC
A

T
IO

N

Meet

Specifications?

Implement Behavior?

Equivalent?

Equivalent?

Verification of Complex Systems (1/15)

 System-On-Chip (SoC)

