
Introduction to Embedded 

Systems 



Outline 

 Embedded Systems 

 High Performance Embedded Systems 

 Verification and Validation 

 Conventional Verification of Embedded 

Systems 

 Verification of Complex Systems 

 Conclusion 

 Questions and Answers 

 



Introduction to Embedded Systems (1/4) 

 An application specific electronic sub-system 

which is completely encapsulated by the main 

system it belongs to. 

 

 The main systems can range from household 

appliances, home automation, consumer 

electronics, ATMs, network routers, automobiles, 

aircrafts, etc. 

 



Introduction to Embedded Systems (2/4) 

 Designed for some specific tasks 

 

 Subjected to real time performance constraints 

that must be met 

 

  Feature tightly integrated combinations of 

hardware and software 



Introduction to Embedded Systems (3/4) 

 Typical embedded software components:  

Embedded Application Code 

Device Drivers 

A Real-Time Operating System (RTOS) 

Hardware abstraction layer(s) 

System initialization routines 
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High Performance Embedded Systems 

(1/10) 

 Massive computational resources with 

requirements of 

 Small size 

 Low Weight 

 Very low power consumption.  

 Need to employ innovative, advanced system 

architectures 



High Performance Embedded Systems 

(2/10) 

 Architectures typically feature  

 Multiple processor cores 

 Tiered memory structures with multi-level memory 

caching 

 Multi-layer bus structures.  

 Super-pipelining and/or super-scaling 



High Performance Embedded Systems 

(3/10) 

 The current state-of-the-art: 

Multiple computational and data-processing 

engines, memory, and peripherals, all constructed 

on a single silicon chip called a System-on-Chip 

(SoC). 

 Designs to feature multiple general-purpose 

central processing unit (CPU) cores as well as 

special-purpose digital signal processor (DSP) 

cores 
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High Performance Embedded Systems 

(5/10) 

 Embedded designs to include multiple 

general-purpose central processing unit 

(CPU) cores as well as special-purpose digital 

signal processor (DSP) cores 

Firmware 
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Core 1 Core 2 

Memory 

Core 3 



High Performance Embedded Systems 

(6/10) 

 Multilayer Bus Structures 

CPU and DSP cores can have separate 

buses for control, instructions, and data,  

DMA buses along with one or more 

dedicated peripheral buses.  

Both the CPUs and DSPs can have tightly-

coupled memory buses, external memory 

buses, and shared memory buses. 



High Performance Embedded Systems 

(7/10) 

 Increasing software content 

 The software content of embedded systems is 

increasing at a phenomenal rate 

 software development and test often dominate 

the costs, timelines, and risks associated with 

today's embedded system designs.  



High Performance Embedded Systems 

(8/10) 



High Performance Embedded Systems 

(9/10) 

 Decreasing design cycles 

 Market windows are continually narrowing 

 Competition gets more and more aggressive 

 Consumer electronics markets are extremely 

sensitive to time-to-market pressures  



High Performance Embedded Systems 

(10/10) 
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Verification and Validation (1/7) 

 What is Verification and Validation? 

 

Verification 

 

Verification confirms that work products 

properly reflect the requirements specified 

for them. In other words, verification ensures 

that  ‘the product has been built right’. 

 

 

 

 



Verification and Validation (2/7) 

Validation 

 

Validation confirms that the product, as 

provided, will fulfill its intended use. In other 

words, validation ensures that ‘you built the 

right thing’”. 



Verification and Validation (3/7) 

 Why Verification and Validation? 

Business considerations 

 Legal 

Refutation 

Warranty / Recall 

Regulatory issues 

FDA 

FAA 

DoD 
 



Verification and Validation (4/7) 

Safety considerations 

 Life sciences 

Mission critical 

Automotive examples: 

Drive by wire 

oElectronic throttle control 

oElectronic steering 

ABS 

Airbag Systems 



Verification and Validation (5/7) 



Abstraction Levels of Design Under Verification 

 Behavioral Model 

 Example: c <= a * b 

 May not include timing information 

 Verification examines the basic operation and interactions among the systems’ 

components 

 RTL (Register-Transfer-Level) Model 
– VHDL/Verilog commonly used to model RTL 

– Accurate cycle-level information (no 
propagation delays) 

– Verification of exact cycle behavior 

 Gate-Level Model 
– Specifies each individual logic element and their interconnections 

– Verification at this level is time-consuming but necessary for 
clock boundaries and reset conditions 

Verification and Validation (6/7) 



Importance of Verification in Early Design Stages 

Behavioral RTL Gate Level Transistor 

Revenue loss 
due to delay in 
Time-To-Market 

Remove as many bugs as possible in early designs stages 

Ease of verification 

Source: Verification Methodology Manual, 2000 - TransEDA 
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Conventional Verification of Embedded 

Systems (1/13) 

Determine the overall system 
architecture 

Design System Hardware 

Construct hardware prototype  

Install and test OS and/or 
middleware 

Develop, port, integrate, and debug 
embedded software  



Conventional Verification of Embedded 

Systems (2/13) 

 Conventional verification drawback  (mainly 

due to shorter design cycles) 

SoC to be fabricated before developing the 

software 

Having to wait for the implementation-level 

representation of the design (specified RTL) 

to become available before developing the 

embedded software. 

 



Conventional Verification of Embedded 

Systems (3/13) 

 Physical Prototypes as primary verification 

mechanism 

Typically involves a circuit board and the 

SoC in the form of working silicon.  

The hardware portion of the design is now 

almost 100 percent tied down  

Not much useful in the context of exploring 

and evaluating alternative architectures 

 



Conventional Verification of Embedded 

Systems (4/13) 

 Important hardware/software tradeoffs can’t 
be made before the design partitioning is 
locked down and the chips are 
manufactured 

System design must be largely based on 
experience and intuition, as opposed to 
hard data. 

Unacceptable in today's complex 
algorithms, multi-core systems, tiered 
memory systems, and multi-layered bus 
structures. 



Conventional Verification of Embedded 

Systems (5/13) 

 Hardware acceleration and emulation as 

verification mechanism 

These typically  involve arrays of field-

programmable gate arrays (FPGAs) or 

processors.  

These solutions accept RTL representations 

of the design and translate them into an 

equivalent suitable for hardware 

acceleration.  

The verification can get very  costly 



Conventional Verification of Embedded 

Systems (6/13) 

 Issues in multi-processor designs 

Emulators also have problems with limited 

visibility into the design 

Software development cannot commence 

until a long way into the design cycle. (The 

hardware design is largely established  

limitations with regard to exploring and 

evaluating alternative architectures) 

 



Conventional Verification of Embedded 

Systems (7/13) 

 RTL-based simulation as verification 

mechanism 

An RTL simulation solution requires RTL 

representations of the hardware  Delays 

in meaningful software development until 

the RTL becomes available 

 It simply isn't possible to use software 

simulation to determine how well the 

architecture performs on real software 

workloads 



Conventional Verification of Embedded 

Systems (8/13) 

A software simulation running on a on very 

high-end (and correspondingly expensive) 

machine would hardly achieve equivalent 

simulation speeds of more than a few Hz 
 That is, a few cycles of embedded system clock for each 

second in real time 

 Detailed simulations can be performed on only small 

portions of the software.  



Conventional Verification of Embedded 

Systems (9/13) 

 ISS-based simulation as verification 

mechanism 

 Verify and debug chips using software models that can execute 
the same binary code as the actual processors 

 

 Limitations: 

– Only processor cores can be modeled 

– Accuracy is compromised for high performance verification 
(typically not cycle accurate) 

– Lack of synchronization support for multi-processor based 
systems 
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Verification of Complex Systems (1/15) 

 System-On-Chip (SoC) designs increasingly 
become the driving force of a number of 
modern electronics systems 

 A number of key technologies integrate 
together in forming the highly complex 
embedded platform 

 Verification need to account for integration of 
a number of different IPs into new designs, 
the coupling of embedded software into 
designs, and the verification flow from core to 
the design, etc. 

 

 



Verification of Complex Systems (2/15) 

 IP Core Verification and System Level 

Verification both need to be addressed 

adequately 

 On top of structural complexities, further 

bottlenecks are introduced by: 

 Time to market pressures 

 Increasing software content 

 Other stringent design constraints such as size, 

weight, low power levels, etc. 



Verification of Complex Systems (3/15) 

 The system level design strategies should be 
considered together with the complex task of 
verification 

 Hardware , first, then software, is no longer a 
viable theme 

 Appropriate verification strategies need to be 
employed from the outset to minimize 
downstream defects including SoC re-spins 

 Concurrent hardware and software 
development would mandatory. 



Verification of Complex Systems (4/15) 

 SoC architects to employ a broad system 

level design strategy that will allow: 

Explore and evaluate system level 

architectural choices 

Concurrent hardware-software design 

Easily evaluate and integrate a number of 

different technologies 

Adequate verification at every level of the 

design cycle 

 



Verification of Complex Systems (5/15) 

Carry out an architecture level power 

analysis 

Drive requirements for executable 

specifications 

Provide visibility into designs 

Easily handle regression testing 

 

How do we achieve all this with 

such complexity? 
 



Verification of Complex Systems (6/15) 

 The answer to all above is to employ a Unified 

System Model without committing to any pre-

conceived hardware / software partitioning. 

 This will be a type of electronic systems level 

(ESL) prototype 

 The form of these models can be anywhere 

from a cycle-accurate RTL model and to a 

time-efficient ISS model, or a hybrid 



Verification of Complex Systems (7/15) 

Source: “Mixed-Abstraction Virtual System Prototypes 
 Close SOC Design Gaps”, Carbon Design Systems, Inc. 
 



Verification of Complex Systems (8/15) 
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Verification of Complex Systems (9/15) 

 The basis for a unified system model is 

Transaction Level Modeling (TLM). 

Transactions 
 Basic representation for exchange of information between two 

blocks 

 Improve efficiency and performance of verification by raising the 

level of abstractions from the signal level 

 Can be as simple as a single data write operation or linked 

together to form a complex IP packet transfer 



Verification of Complex Systems (10/15) 

Transactions: 

Source: Cadence white paper, “The Unified Verification Methodology” 



Stimulus Generation: Transactions 

 Transactor provides a level of abstraction between the pins of the 
model and the test code 

 Encapsulation: Test code does not need knowledge about the bus protocols 

 Abstraction: Allows test to be written in an abstract fashion that specifies the 
required transactions, instead of the operation execution details 

 Re-use: Transactor provides a standard set of routines that the test can call 

 Modularity: Verification environment can be built from a set of parts 
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Verification of Complex Systems (11/15) 



C 
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Transaction Level Models (TLM) 

 Support functional design and verification at various abstraction levels 

 Advantages 

 Enhance reusability in the test-benches 

 Improve debugging and coverage analysis 

 

Source: Chong-Min Kyung, “Current Status and Challenges of SoC Verification for Embedded Systems Market”, IEEE International 
SOC Conference, 2003  

Verification of Complex Systems (12/15) 



Unified System Model:  Functional Prototype  
 Unambiguous executable specification 

 Golden top-level verification environment and integration vehicle 
 Reference for defining transaction coverage requirements 

 Model for performing architectural trade-offs  

 Early handoff vehicle to system development teams 

 Fast executable model for early embedded software development 

Source: Cadence white paper, “The Unified Verification Methodology” 

Verification of Complex Systems (13/15) 



Functional Level to Implementation Level Prototype 

Source: Cadence white paper, “The Unified Verification Methodology” 

Verification of Complex Systems (14/15) 



 Unified System Model with the highest desirable abstraction is created 
early in the design process by the SoC verification team working 
closely with the architects 

 A test suite is included with the Functional Prototype 

 Each subsystem has its own TLM (Transaction Level Model) defined at 
the SoC partition 

 Individual subsystem teams proceed to develop the implementation 
level of the subsystem 

 The test suite is run on the FVP as each subsystem implementation is 
integrated into the FVP 

 The process of integration is facilitated by transactors, which translate 
information between the transaction and signal level 

 Once all the transaction-level models are replaced, the implementation 
level prototype is complete 

Verification of Complex Systems (15/15) 
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Conclusion 

 Embedded systems tend to contain tens of 

processor cores with multi-layered busses and 

bus-bridges. 

 Hardware and software development a 

mandatory design methodology. 

 Existing embedded system verification strategies 

do not offer enough sophistication for today's 

complex systems.  



Conclusion 

 TLM based Unified System Models provide a 

means to carry out design and verification hand in 

hand while promoting hardware / software co-

development. 

Source: DSP Design Line 



End of Presentation 

 

Thank you! 

 

Any Questions ? 
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Introduction to Embedded Systems (1/4) 

An application specific electronic sub-system which 

is completely encapsulated by the main system it 

belongs to. 

 

The main systems can range from household 

appliances, home automation, consumer  

 

 

 routers, automobiles, aircrafts, etc. 

electronics, ATMs, network 



High Performance Embedded Systems 

(3/10) 

 The current state-of-the-art: 

Multiple computational and data-processing 

engines, memory, and peripherals, all constructed 

on a single silicon chip called a System-on-Chip 

(SoC). 

 Designs to feature multiple general-purpose 

central processing unit (CPU) cores as well as 

special-purpose digital signal processor (DSP) 

cores 



Conventional Verification of Embedded 

Systems (7/13) 

 RTL-based simulation as verification 

mechanism 

a = 1;

#20 b = 1;

$display (“status is = %d”,c);

...

Testbench DUV

Source: Chong-Min Kyung, “Current Status and Challenges of SoC Verification for Embedded 
Systems Market”, IEEE International SOC Conference, 2003  



Conventional Verification of Embedded 

Systems (5/13) 

 Hardware acceleration and emulation as 

verification mechanism 

These typically  involve arrays of field-

programmable gate arrays (FPGAs) or 

processors.  
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Source: Chong-Min Kyung, 
“Current Status and 
Challenges of SoC 
Verification for Embedded 
Systems Market”, IEEE 
International SOC 
Conference, 2003  



Conventional Verification of Embedded 

Systems (5/13) 

 Hardware acceleration and emulation as 

verification mechanism 
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Source: Chong-Min Kyung, 
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Verification of Complex Systems (4/15) 
SoC architects to employ a 

broad system level design 
strategy that will allow: 
 Explore and evaluate 

system level 
architectural choices 

 Concurrent hardware-
software design 

 Easily evaluate and 
integrate a number of 
different technologies 

 Adequate verification at 
every level of the design 
cycle 
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Verification of Complex Systems (1/15) 

 System-On-Chip (SoC) 

 

 


